HHUflauschig on Candy Speech Detection: Hybrid Approaches for Binary Classification and Span Typing

Wiebke Petersen, Lara Eulenpesch
Heinrich Heine Universität
Düsseldorf, Germany
{wiebke.petersen, lara.eulenpesch}@hhu.de

GermEval 2025 Shared Task on Candy Speech Detection, Hildesheim

Subtask 1: Task definition

Task:

- **Objective**: Identify whether a German YouTube comment contains *Flausch* (affectionate, positive language).
- Task Type: Binary classification.
- Challenges: Subjective definitions, informal language, spelling variation.

Subtask 1: System Overview

Data preparation:

- added spelling corrected comments
- added translations
- create held-out 10% split of training data for evaluation

Subtask 1: System Overview

Data preparation:

- added spelling corrected comments
- added translations
- create held-out 10% split of training data for evaluation

Approach:

- Hybrid architecture combining:
 - Linguistically motivated features
 - Fine-tuned transformer models
- Final prediction made by meta-classifier (logistic regression).

Fine-tuned LLMs

Results on held-out evaluation data

Model	Input	
gbert-large	original	0.906
gbert-large	spelling corrected	0.896
bert-base-german	original	0.885
bert-base-german	spelling corrected	0.880
roberta-large	translated	0.875

original input > corrected text

Results: large models > base models

German models > English model on translations

Features

- Softmax scores of fine-tuned LLMs: for original, spelling corrected and translated comments
- Sentiment Polarity: via TextBlob and TextBlobDE
- Ekman's Emotions Scores: via English translations and avaiable fine-tuned RoBERTa model (anger, disgust, fear, happiness, sadness, surprise)
- Positive Lexicon features:
 - Lists of positive words, tokens, emojis, emoticons (via ChatGPT-4o)
 - Tokens filtered out by frequency in non-Flausch comments
 - Absolute count and ratio features
- Surface Features:
 - Number of words with consecutive capital letters (2+)
 - Number of repeated characters (3+)

Results of meta-classifiers (logistic regression)

Results on held-out evaluation data

Features	F1	Rec.	Prec.
all non-BERT features all BERT features	0.694	0.785	0.621
	0.926	0.944	0.908
all features winning configuration	0.932	0.936	0.927
	0.938	0.929	0.947
gbert-large on orig.	0.906	0.881	0.932

winning configuration = gbert-large orig. comment + all sentiments (Ekman + polarity) + positive word count + positive token count + positive token ratio

Results on competition test data

winning configuration	0.887	0.900	0.875

BA-thesis of Eulenpesch (with improved features):

Results: all > BERT > positive counts > sentiments

Subtask 2: Task Definition

- **Goal:** Identify text spans expressing Flausch and assign one of 10 *Flausch-types*.
- Evaluation:
 - Strict F1: Correct span boundaries and correct type
 - Span F1: Span only
 - **Type F1**: Type only
- Challenge: Both accurate segmentation and subtle type classification

Subtask 2: System Overview

- We explored two paradigms:
 - End-to-End: single model for joint span+type prediction (fine-tuned gbert-large)
 - 2. Two-Step Pipeline:
 - Step 1: span segmentation (rule-based or with LLM)
 - Step 2: type classification (with LLM)

Subtask 2: System Overview

- We explored two paradigms:
 - End-to-End: single model for joint span+type prediction (fine-tuned gbert-large)
 - 2. Two-Step Pipeline:
 - Step 1: span segmentation (rule-based or with LLM)
 - Step 2: type classification (with LLM)
- Best System: Two-step pipeline based on gbert-large for segmentation and classification

Two-Step Pipelines: Span Segmentation

LLM Approach: Token-level BIO tagging with BERT

Rule-Based Approach: : We apply heuristics over SpaCy

dependency trees:

Token 1 Token 2 Token 3 Token 4 Token 5

Two-Step Pipelines: Span Segmentation

LLM Approach: Token-level BIO tagging with BERT

Rule-Based Approach: : We apply heuristics over SpaCy dependency trees:

 for each token, we traverse upward until reaching a root, which is either the syntactic root, reported speech (rs), coordinating conjunction (cd), or junctor (ju).

Root A	Root A	Root B	Root B	Root C
\uparrow	\uparrow	\uparrow	\uparrow	\uparrow
Token 1	Token 2	Token 3	Token 4	Token 5

Two-Step Pipelines: Span Segmentation

LLM Approach: Token-level BIO tagging with BERT

Rule-Based Approach: : We apply heuristics over SpaCy dependency trees:

- for each token, we traverse upward until reaching a root, which is either the syntactic root, reported speech (rs), coordinating conjunction (cd), or junctor (ju).
- Consecutive tokens sharing the same root form a span.

Two-Step Pipelines: Span classification

gbert-large fine-tuned to classify spans into

- 10 Flausch types (trained on typed flausch spans) or
- 10 Flausch types + not-Flausch class (trained on typed flausch spans + non-Flausch spans)

Two-Step Pipelines: Span classification

gbert-large fine-tuned to classify spans into

- 10 Flausch types (trained on typed flausch spans) or
- 10 Flausch types + not-Flausch class (trained on typed flausch spans + non-Flausch spans)
- non-Flausch spans are generated from
 - non Flausch comments using our SpaCy heuristics

• Flausch spans by splitting at Flausch spans

Results

Results on held-out evaluation data

System	Strict	Span	Туре
gbert-end-to-end gbert 2-step gbert 2-step +	0.647 0.728 0.693	0.682 0.769 0.769	0.792 0.833 0.785
not-flausch spacy 2-step	0.370	0.389	0.733

Results on competition test data

gbert 2-step	0.615	0.668	0.766
•			

- \bullet additional not-flausch label for rejecting non-Flausch spans \to no improvement
- rule-based approach does not identify correct spans

Some limitations

 Data Split: Held-out evaluation not stratified by video ⇒ possible leakage

Some limitations

- Data Split: Held-out evaluation not stratified by video ⇒ possible leakage
- Distribution shift between train and test set:
 - comments in test set are longer (68.6 vs. 58.3 tokens)
 - comments in test set contain higher proportion of Flausch comments (41.3% vs. 29.1%)
 - comments in test set contain more annotated spans per comment (0.65 vs. 0.43).
 - test and train differ in span type distribution.

